Quantcast

Le théorème de Thalès : propriétés et réciproque avec exemples

  • Publié le 17 novembre 2020
  • Mis à jour le 27 novembre 2020
  • Théo
Le théorème de Thalès est l’un des deux grands théorèmes du collège avec le théorème de Pythagore que tu as dû déjà voir. Le théorème, ainsi que la réciproque vont te permettre de calculer des longueurs et de montrer que des droites sont parallèles (ou non). Focus sur tous les éléments à retenir du théorème de Thalès.
Le théorème de Thalès
Le théorème de Thalès : propriétés et réciproque avec exemples

Le théorème de Thalès, c’est quoi ?

Quand l’appliquer ?

Le théorème de Thalès s’applique dans deux configurations distinctes, mais les formules vont être les mêmes. Quand on coupe deux droites sécantes à un point par deux droites parallèles, on obtient deux triangles. Ces triangles peuvent être « l’un dans l’autre » ou en forme de sablier :

théorème de thalès
théorème de Thalès

Dans les deux cas, ce qui va nous intéresser ce sont les deux droites qui doivent être parallèles pour que l’on puisse trouver la longueur d’un segment et donc appliquer le théorème.

Propriété 

Quand on coupe deux droites sécantes à un point par deux droites parallèles, les longueurs des côtés d’un triangle sont proportionnelles aux côtés associés de l’autre triangle.

Si A, B, C, D, E sont cinq points tels que:

  • (AB) et (DE) sont parallèles.
  • (AD) et (EB) se coupent en C.
théorème de thalès

Alors :

[AC] / [DC] = [BC] / [EC] = [AB] / [DE]

Quand on écrit l’égalité des trois quotients, on met :

  • au numérateur, un côté du petit triangle ;
  • au dénominateur, le côté associé du second triangle.

Application

Soit la configuration exposée ci-dessus.
On donne DC=3 cm, AC=5 cm, ED=4cm et BC=4cm.
Calculer EC et AB.

Méthode : 

1. On énonce le théorème et on écrit les rapports égaux.

2. On remplace les longueurs connues par leurs valeurs numériques et on raye le rapport inutile.

3. On réalise un produit en croix.

On sait que :
D appartient à (AC)
E appartient à (BC)
(ED) et (AB) sont parallèles.

D’après le théorème de Thalès :

DC / AC = DE / AB = EC / BC

3 / 5= 4 / AB = EC / 4

D’où en utilisant l’égalité des produits en croix, on a :

3 × AB = 4 × 5

3 × AB = 20

AB = 20 : 3

3 × 4 = 5 × EC

12 = 5 × EC

EC = 12 : 5 = 2,4

Voir aussi :cours de 3e sur le théorème de Thalès

Conséquence du théorème de Thalès

Le théorème de Thalès permet aussi de montrer que deux droites ne sont pas parallèles (par l’absurde) en montrant qu’il n’y a pas d’égalité, on parlera de conséquence du théorème de Thalès.

Exemple

théorème de Thalès

Soit la figure ci-dessus. On donne DA = 4 cm et AC = 10 cm, AE = 2 cm, DE = 3 cm et BC = 7 cm.

Montrer que les droites (DE) et (BC) ne sont pas parallèles.

On a d’une part : DA / AC = 4 / 10 ; et d’autre part : DE / BC = 3 / 7

3 × 10 = 30 et 7 × 4 = 28

Les produits en croix ne sont pas égaux, donc :
AD/AC ≠ DE/BC.

D’après la conséquence du théorème de Thalès, les droites (DE) et (BC) ne sont pas parallèles.

Réciproque du théorème de Thalès

La réciproque du théorème de Thalès permet de démontrer si des droites sont parallèles.

Lire aussi :cours de 3e sur la réciproque du théorème de Thalès

Exemple :

théorème de Thalès

Soit la figure suivante avec CD = 4 cm ; AC = 5 cm ; CE= 6 cm et BC =7,5 cm.
Montrer que les droites (AB) et (TE) sont parallèles.

On a d’une part CD / AC = 4 / 5 ; et d’autre part CE / BC = 6 / 7,5

4 × 7,5 = 30
6 × 5 = 30

Les produits en croix sont égaux donc CD / AC = CE / BC.

On sait également que les points A,D,C et B,E,C sont alignés dans le même ordre.

Donc d’après la réciproque du théorème de Thalès (AB) et (DE) sont parallèles.

Sur le même sujet
07/08/2020 à 10:35

Comment calculer un pourcentage ? Méthode facile (formules avec exemples)

Calculer un pourcentage peut s'avérer compliqué si on n'a pas la bonne méthode ! Notre professeur certifié vous propose une explication simple, rapide et claire pour les calculs de pourcentage : augmentation, diminution, trouver le pourcentage d'une valeur et inversement. Suivez le guide ! Nous avons également ajouté des exemples pour vous aider à mieux comprendre.

23/04/2020 à 10:09

Comment calculer une moyenne (simple, pondérée ou avec intervalles) ?

Il existe deux types de calculs de moyennes particulièrement utilisés : la moyenne simple (ou "moyenne arithmétique") et la moyenne pondérée. Retrouvez dans cet articles les formules pour calculer une moyenne illustrées par des exemples, ainsi que quelques cas particuliers ! Nous avons évidemment ajouté des exemples concrets de calculs pour vous aider à mieux comprendre.

23/04/2020 à 12:26

Comment faire un calcul de produit en croix ?

Calculer un produit en croix permet, dans la vie courante de résoudre de nombreux problèmes de proportionnalité, et particulièrement de nous aider à calculer des pourcentages. Voici la méthode (avec exemples !) pour calculer un produit en croix.

Commentaires (0)

Votre adresse de messagerie ne sera pas publiée.